Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 9, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172920

RESUMO

BACKGROUND: Existing plasmid systems offer a fundamental foundation for gene expression in Cupriavidus necator; however, their applicability is constrained by the limitations of conjugation. Low segregational stabilities and plasmid copy numbers, particularly in the absence of selection pressure, pose challenges. Phytases, recognized for their widespread application as supplements in animal feed to enhance phosphate availability, present an intriguing prospect for heterologous production in C. necator. The establishment of stable, high-copy number plasmid that can be electroporated would support the utilization of C. necator for the production of single-cell protein from CO2. RESULTS: In this study, we introduce a novel class of expression plasmids specifically designed for electroporation. These plasmids contain partitioning systems to boost segregation stability, eliminating the need for selection pressure. As a proof of concept, we successfully produced Escherichia coli derived AppA phytase in C. necator H16 PHB- 4 using these improved plasmids. Expression was directed by seven distinct promoters, encompassing the constitutive j5 promoter, hydrogenase promoters, and those governing the Calvin-Benson-Bassham cycle. The phytase activities observed in recombinant C. necator H16 strains ranged from 2 to 50 U/mg of total protein, contingent upon the choice of promoter and the mode of cell cultivation - heterotrophic or autotrophic. Further, an upscaling experiment conducted in a 1 l fed-batch gas fermentation system resulted in the attainment of the theoretical biomass. Phytase activity reached levels of up to 22 U/ml. CONCLUSION: The new expression system presented in this study offers a highly efficient platform for protein production and a wide array of synthetic biology applications. It incorporates robust promoters that exhibit either constitutive activity or can be selectively activated when cells transition from heterotrophic to autotrophic growth. This versatility makes it a powerful tool for tailored gene expression. Moreover, the potential to generate active phytases within C. necator H16 holds promising implications for the valorization of CO2 in the feed industry.


Assuntos
6-Fitase , Cupriavidus necator , Cupriavidus necator/metabolismo , 6-Fitase/genética , 6-Fitase/metabolismo , Dióxido de Carbono/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Bioengineering (Basel) ; 9(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35621482

RESUMO

Aerobic, hydrogen oxidizing bacteria are capable of efficient, non-phototrophic CO2 assimilation, using H2 as a reducing agent. The presence of explosive gas mixtures requires strict safety measures for bioreactor and process design. Here, we report a simplified, reproducible, and safe cultivation method to produce Cupriavidus necator H16 on a gram scale. Conditions for long-term strain maintenance and mineral media composition were optimized. Cultivations on the gaseous substrates H2, O2, and CO2 were accomplished in an explosion-proof bioreactor situated in a strong, grounded fume hood. Cells grew under O2 control and H2 and CO2 excess. The starting gas mixture was H2:CO2:O2 in a ratio of 85:10:2 (partial pressure of O2 0.02 atm). Dissolved oxygen was measured online and was kept below 1.6 mg/L by a stepwise increase of the O2 supply. Use of gas compositions within the explosion limits of oxyhydrogen facilitated production of 13.1 ± 0.4 g/L total biomass (gram cell dry mass) with a content of 79 ± 2% poly-(R)-3-hydroxybutyrate in a simple cultivation set-up with dissolved oxygen as the single controlled parameter. Approximately 98% of the obtained PHB was formed from CO2.

3.
Biotechnol Biofuels Bioprod ; 15(1): 30, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296345

RESUMO

BACKGROUND: Substrate accessibility remains a key limitation to the efficient enzymatic deconstruction of lignocellulosic biomass. Limited substrate accessibility is often addressed by increasing enzyme loading, which increases process and product costs. Alternatively, considerable efforts are underway world-wide to identify amorphogenesis-inducing proteins and protein domains that increase the accessibility of carbohydrate-active enzymes to targeted lignocellulose components. RESULTS: We established a three-dimensional assay, PACER (plant cell wall model for the analysis of non-catalytic and enzymatic responses), that enables analysis of enzyme migration through defined lignocellulose composites. A cellulose/azo-xylan composite was made to demonstrate the PACER concept and then used to test the migration and activity of multiple xylanolytic enzymes. In addition to non-catalytic domains of xylanases, the potential of loosenin-like proteins to boost xylanase migration through cellulose/azo-xylan composites was observed. CONCLUSIONS: The PACER assay is inexpensive and parallelizable, suitable for screening proteins for ability to increase enzyme accessibility to lignocellulose substrates. Using the PACER assay, we visualized the impact of xylan-binding modules and loosenin-like proteins on xylanase mobility and access to targeted substrates. Given the flexibility to use different composite materials, the PACER assay presents a versatile platform to study impacts of lignocellulose components on enzyme access to targeted substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...